Particle Kalman Filtering: A Nonlinear Bayesian Framework for Ensemble Kalman Filters*

نویسندگان

  • IBRAHIM HOTEIT
  • XIAODONG LUO
  • King Abdullah
  • DINH-TUAN PHAM
چکیده

This paper investigates an approximation scheme of the optimal nonlinear Bayesian filter based on the Gaussian mixture representation of the state probability distribution function. The resulting filter is similar to the particle filter, but is different from it in that the standard weight-type correction in the particle filter is complemented by the Kalman-type correction with the associated covariance matrices in the Gaussian mixture. The authors show that this filter is an algorithm in between the Kalman filter and the particle filter, and therefore is referred to as the particle Kalman filter (PKF). In the PKF, the solution of a nonlinear filtering problem is expressed as the weighted average of an ‘‘ensemble of Kalman filters’’ operating in parallel. Running an ensemble of Kalman filters is, however, computationally prohibitive for realistic atmospheric and oceanic data assimilation problems. For this reason, the authors consider the construction of the PKF through an ‘‘ensemble’’ of ensemble Kalman filters (EnKFs) instead, and call the implementation the particle EnKF (PEnKF). It is shown that different types of the EnKFs can be considered as special cases of the PEnKF. Similar to the situation in the particle filter, the authors also introduce a resampling step to the PEnKF in order to reduce the risk of weights collapse and improve the performance of the filter. Numerical experiments with the strongly nonlinear Lorenz-96 model are presented and discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ensemble Kalman Filters (EnKF) for State Estimation and Prediction of Two-time Scale Nonlinear Systems with Application to Gas Turbine Engines

In this paper, we propose and develop a methodology for nonlinear systems health monitoring by modeling the damage and degradation mechanism dynamics as ”slow” states that are augmented with the system ”fast” dynamical states. This augmentation results in a two-time scale nonlinear system that is utilized for development of health estimation and prediction modules within a health monitoring fra...

متن کامل

Data Assimilation in Structural Dynamics: Extended-, Ensemble Kalman and Particle Filters

Combined state and parameter estimation of dynamical systems plays a crucial role in extracting system response from noisy measurements. A wide variety of methods have been developed to deal with the joint state-parameter estimation of nonlinear dynamical systems. The Extended Kalman Filter method is a popular approach for the joint systemparameter estimation of nonlinear systems. This method c...

متن کامل

A Local Least Squares Framework for Ensemble Filtering

Many methods using ensemble integrations of prediction models as integral parts of data assimilation have appeared in the atmospheric and oceanic literature. In general, these methods have been derived from the Kalman filter and have been known as ensemble Kalman filters. A more general class of methods including these ensemble Kalman filter methods is derived starting from the nonlinear filter...

متن کامل

On the stability and the uniform propagation of chaos properties of Ensemble Kalman-Bucy filters

The Ensemble Kalman filter is a sophisticated and powerful data assimilation method for filtering high dimensional problems arising in fluid mechanics and geophysical sciences. This Monte Carlo method can be interpreted as a mean-field McKean-Vlasov type particle interpretation of the Kalman-Bucy diffusions. In contrast to more conventional particle filters and nonlinear Markov processes these ...

متن کامل

Geophysical signal processing using sequential Bayesian techniques

Sequential Bayesian techniques enable tracking of evolving geophysical parameters via sequential observations. They provide a formulation in which the geophysical parameters that characterize dynamic, nonstationary processes are continuously estimated as new data become available. This is done by using prediction from previous estimates of geophysical parameters, updates stemming from physical ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012